PUBLICATIONS
2022
55. Coupling two charge qubits via a superconducting resonator operating in the res- onant and dispersive regimes,
C. Zhang, G. X. Chan, X. Wang, and Z.-Y. Xue,
Phys. Rev. A 106, 032608 (2022).
54. Sign switching of superexchange mediated by few electrons under nonuniform mag- netic field,
G. X. Chan, and X. Wang,
Phys. Rev. A 106, 022420 (2022).
53. Robust entangling gate for capacitively coupled few-electron singlet-triplet qubits, G. X. Chan, and X. Wang,
Phys. Rev. B 106, 075417 (2022).
52. Microscopic theory on magnetic-field-tuned sweet spot of exchange interactions in multielectron quantum-dot systems,
G. X. Chan, and X. Wang,
Phys. Rev. B 105, 245409 (2022).
2021
51. Implementation of geometric quantum gates on microwave-driven semiconductor charge qubits,
C. Zhang, T. Chen, X. Wang, and Z.-Y. Xue,
Adv. Quantum Technol. 2021, 2100011 (2021).
50. Generalizable control for multiparameter quantum metrology,
H. Xu, L. Wang, H. Yuan, and X. Wang,
Phys. Rev. A 103, 042615 (2021).
49. Charge noise suppression in capacitively coupled singlet-triplet spin qubits under magnetic field,
G. X. Chan, J. P. Kestner, and X. Wang,
Phys. Rev. B 103, L161409 (2021).
48. Generic detection-based error mitigation using quantum autoencoders,
X.-M. Zhang, W. Kong, M. U. Farooq, M.-H. Yung, G. Guo, and X. Wang,
Phys. Rev. A 103, L040403 (2021).
2020
47. High-fidelity geometric gate for silicon-based spin qubits,
C. Zhang, T. Chen, S. Li, X. Wang, and Z.-Y. Xue,
Phys. Rev. A 101, 052302 (2020).
2019
46. Suppression of leakage for a charge quadrupole qubit in triangular geometry,
G. X. Chan, and X. Wang,
Adv. Quantum Technol. 2019, 1900072 (2019).
45. When does reinforcement learning stand out in quantum control? A comparative study on state preparation,
X.-M. Zhang, Z. Wei, R. Asad, X.-C. Yang, and X. Wang,
npj Quantum Inf. 5, 85 (2019).
44. Generalizable control for quantum parameter estimation through reinforcement learning,
H. Xu, J. Li, L. Liu, Y. Wang, H. Yuan, and X. Wang,
npj Quantum Inf. 5, 82 (2019).
43. Quantum information scrambling through a high-complexity operator mapping,
X. Li, G. Zhu, M. Han, and X. Wang,
Phys. Rev. A 100, 032309 (2019).
42. Plug-and-play approach to nonadiabatic geometric quantum computation,
B.-J. Liu, X.-K. Song, Z.-Y. Xue, X. Wang, and M.-H. Yung,
Phys. Rev. Lett. 123, 100501 (2019).
41. Minimal nonorthogonal gate decomposition for qubits with limited control,
X.-M. Zhang, J. Li, X. Wang, and M.-H. Yung,
Phys. Rev. A 99, 052339 (2019).
40. Spin-qubit noise spectroscopy from randomized benchmarking by supervised learning,
C. Zhang, and X. Wang,
Phys. Rev. A 99, 042316 (2019).
2018
39. Tunable charge qubit based on barrier-controlled triple quantum dots,
X.-C. Yang, G. X. Chan, and X. Wang,
Phys. Rev. A 98, 032334 (2018).
38. Automatic spin-chain learning to explore the quantum speed limit,
X.-M. Zhang, Z.-W. Cui, X. Wang, and M.-H. Yung,
Phys. Rev. A 97, 052333 (2018).
37. Leakage and sweet spots in triple-quantum-dot spin qubits: a molecular orbital study,
C. Zhang, X.-C. Yang, and X. Wang,
Phys. Rev. A 97, 042326 (2018).
36. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits,
X.-C. Yang, M.-H. Yung, and X. Wang,
Phys. Rev. A 97, 042324 (2018).
35. On the validity of microscopic calculations of double-quantum-dot spin qubits based on Fock-Darwin states,
G. X. Chan and X. Wang,
Sci. China Phys. Mech. Astron. 61, 040313 (2018).
34. Magic angle for barrier-controlled double quantum dots,
X.-C. Yang and X. Wang,
Phys. Rev. A 97, 012304 (2018).
2017
33. Fast pulse sequences for dynamically corrected gates in singlet-triplet qubits,
R. E. Throckmorton, C. Zhang, X.-C. Yang, X. Wang, E. Barnes, and S. Das Sarma,
Phys. Rev. B 96, 195424 (2017).
32. Suppression of charge noise using barrier control of a singlet-triplet qubit,
X.-C. Yang, and X. Wang,
Phys. Rev. A 96, 012318 (2017).
31. Randomized benchmarking of barrier versus tilt control of a singlet-triplet qubit,
C. Zhang, R. E. Throckmorton, X.-C. Yang, X. Wang, E. Barnes, and S. Das Sarma,
Phys. Rev. Lett. 118, 216802 (2017).
30. Energy spectrum, exchange interaction, and gate crosstalk in a system with a pair of double quantum dots: A molecular-orbital calculation,
X.-C. Yang and X. Wang,
Phys. Rev. A 95, 052325 (2017).
2016
29. Benchmarking of dynamically corrected gates for the exchange-only spin qubit in 1/f noise environment,
C. Zhang, X.-C. Yang, and X. Wang,
Phys. Rev. A 94, 042323 (2016).
28. Fast control of semiconductor qubits beyond the rotating wave approximation,
Y. Song, J. P. Kestner, X. Wang, and S. Das Sarma,
Phys. Rev. A 94, 012321 (2016).
27. Noise filtering of composite pulses for singlet-triplet qubits,
X.-C. Yang and X. Wang,
2015
26. Improving the gate fidelity of capacitively coupled spin qubits,
X. Wang, E. Barnes, and S. Das Sarma,
npj Quantum Inf. 1, 15003 (2015).
25. Robust quantum control using smooth pulses and topological winding,
E. Barnes, X. Wang, and S. Das Sarma,
2014
24. Noise-compensating pulses for electrostatically controlled silicon spin qubits,
X. Wang, F. A. Calderon-Vargas, M. S. Rana, J. P. Kestner, E. Barnes, and S. Das Sarma,
Phys. Rev. B 90, 155306 (2014).
23. Ferromagnetic response of a "high-temperature" quantum antiferromagnet,
X. Wang, R. Sensarma, and S. Das Sarma,
Phys. Rev. B 89, 121118(R) (2014).
22. Robust two-qubit gates for exchange-coupled qubits,
F. Setiawan, H.-Y. Hui, J. P. Kestner, X. Wang, and S. Das Sarma,
Phys. Rev. B 89, 085314 (2014).
21. Robust quantum gates for singlet-triplet spin qubits using composite pulses,
X. Wang, L. S. Bishop, E. Barnes, J. P. Kestner, and S. Das Sarma,
Phys. Rev. A 89, 022310 (2014).
2013
20. Dynamically corrected gates for an exchange-only qubit,
G. T. Hickman, X. Wang, J. P. Kestner, and S. Das Sarma,
Phys. Rev. B 88, 161303(R) (2013).
19. Noise-resistant control for a spin qubit array,
J. P. Kestner, X. Wang, L. S. Bishop, E. Barnes, and S. Das Sarma,
Phys. Rev. Lett. 110, 140502 (2013).
2012
18. Composite pulses for robust universal control of singlet-triplet qubits,
X. Wang, L. S. Bishop, J. P. Kestner, E. Barnes, K. Sun, and S. Das Sarma,
17. Covalency, double-counting and the metal-insulator phase diagram in transition metal oxides,
X. Wang, M. J. Han, L. de' Medici, H. Park, C. A. Marianetti, and A. J. Millis,
Phys. Rev. B 86, 195136 (2012).
2011
16. Mott-insulating phases and magnetism of fermions in a double-well optical lattice,
X. Wang, Q. Zhou, and S. Das Sarma,
Phys. Rev. A 84, 061603(R) (2011).
15. Dynamical mean field theory of nickelate superlattices,
M. J. Han, X. Wang, C. A. Marianetti, and A. J. Millis,
Phys. Rev. Lett. 107, 206804 (2011).
14. Quantum theory of the charge stability diagram of semiconductor double quantum dot systems,
X. Wang, S. Yang, and S. Das Sarma,
Phys. Rev. B 84, 115301 (2011).
13. High-frequency asymptotic behavior of self-energies in quantum impurity models,
X. Wang, H. T. Dang, and A. J. Millis,
Phys. Rev. B 84, 073104 (2011).
12. d3z2-r2 orbital in high-Tc cuprates: Excitonic spectrum, metal-insulator phase diagram, optical conductivity, and orbital character of doped holes,
X. Wang, H. T. Dang, and A. J. Millis,
Phys. Rev. B 84, 014530 (2011).
11. Hubbard model description of silicon spin qubits: Charge stability diagram and tunnel coupling in Si double quantum dots,
S. Das Sarma, X. Wang, and S. Yang,
Phys. Rev. B 83, 235314(2011).
10. Diagrammatic quantum Monte Carlo solution of the two-dimensional cooperon-fermion model,
K.-Y. Yang, E. Kozik, X. Wang, and M. Troyer,
Phys. Rev. B 83, 214516(2011).
9. Generic Hubbard model description of semiconductor quantum-dot spin qubits,
S. Yang, X. Wang, and S. Das Sarma,
Phys. Rev. B 83, 161301(R) (2011). (Editors' suggestion)
8. Role of oxygen-oxygen hopping in the three-band copper-oxide model: Quasi-particle weight, metal insulator and magnetic phase boundaries, gap values,and optical conductivity,
X. Wang, L. de' Medici, and A. J. Millis,
Phys. Rev. B 83, 094501(2011).
2010
7. Theory of oxygen K edge x-ray absorption spectra of cuprates,
X. Wang, L. de' Medici, and A. J. Millis,
Phys. Rev. B 81, 094522(2010).
6. Quantum criticality and non-Fermi-liquid behavior in a two-level two-lead quantum dot,
X. Wang and A. J. Millis,
Phys. Rev. B 81, 045106 (2010).
2009
5. Correlation strength, gaps, and particle-hole asymmetry in high-Tc cuprates: A dynamical mean field study of the three-band copper-oxide model,
L. de' Medici, X. Wang, M. Capone, and A. J. Millis,
Phys. Rev. B 80, 054501(2009).
4. Antiferromagnetism and the gap of a Mott insulator: Results from analytic continuation of the self-energy,
X. Wang, E. Gull, L. de' Medici, M. Capone, and A. J. Millis,
Phys. Rev. B 80, 045101(2009). (Editors' suggestion)
2008
3. Local order and the gapped phase of the Hubbard model: a plaquette dynamical mean field investigation,
E. Gull, P. Werner, X. Wang, M. Troyer, and A. J. Millis,
Europhys. Lett. 84, 37009 (2008).
2. Electronic correlation in nanoscale junctions: Comparison of the GW approximation to a numerically exact solution of the single-impurity Anderson model,
X. Wang, C. D. Spataru, M. S. Hybertsen, and A. J. Millis,
Phys. Rev. B 77, 045119 (2008).
2004
1. Additive temporal coloured noise induced Eckhaus instability in complex Ginzburg-Landau equation system,
X. Wang, X. Tian, H.-L. Wang, Q. Ouyang, and H. Li,
Chin. Phys. Lett. 21, 2365 (2004).
Preprints
2024
73. Efficient large-scale quantum optimization via counterdiabatic ansatz,
J. Liu, and X. Wang,
arXiv
72. A free-fermion formulation of two-dimensional Ising models,
D.-Z. Li, X. Wang, and X.-B. Yang,
arXiv
71. Exploring entanglement spectrum and phase diagram in multi-electron quantum dot chains,
G. He, and X. Wang,
70. Cryogenic in-memory computing using tunable chiral edge states,
Y. Liu, A. Lee, K. Qian, P. Zhang, H. He, Z. Ren, S. K. Cheung, Y. Li, X. Zhang, Z. Ma, Z. Xiao, G. Yu, X. Wang, J. Liu, Z. Wang, K. L. Wang, and Q. Shao,
69. Residual entropy of eexagonal ice and cubic ice: a transfer matrix description,
D.-Z. Li, Y.-J. Cen, X. Wang, and X.-B. Yang,
arXiv
68. Group sparse matrix optimization for efficient quantum state transformation,
K. M. Lai, and X. Wang,
Phys. Rev. A 110, 022445 (2024).
67. Quantum modeling simulates nutrient effect of bioplastic polyhydroxyalkanoate (PHA) production in Pseudomonas putida,
L. Y. L. Ho, L. Pan, F. Meng, K. T. M. Ho, F. Liu, M.-T. Wu, H. I. Lei, G. Bhachu, X. Wang, O. Dahlsten, Y. Sun, P.-H. Lee, G. Y. A. Tan,
Sci. Rep. 14, 18255 (2024).
66. Problems of a quantum secure direct communication scheme based on intermediate- basis,
X. Zou, X. Wang, S. Zheng, Z. Rong, Z. Huang, Y. Chen, J. Liu, X. Liang, J. Wu,
Quantum Inf. Process. 23, 218 (2024).
65. Decoherence in exchange-coupled quantum spin qubit systems: impact of multi- qubit interactions and geometric connectivity,
Q. Fu, J. Wu, and X. Wang,
Phys. Rev. A 109, 052628 (2024).
64. Semiquantum key distribution using initial states in only one basis without the classical user measuring,
X. Liang, X. Zou, X. Wang S. Zheng, Z. Rong, Z. Huang, J. Liu, Y. Chen, and J. Wu,
Ann.
Phys. (Berlin) 2024, 2300515 (2024).
63. Applying a class of general maximally entangled states in measurement-device- independent quantum secure direct communication,
J. Liu, X. Zou, X. Wang, Y. Chen, Z. Rong, Z. Huang, S. Zheng, X. Liang, and J. Wu,
Phys. Rev. Appl. 21, 044010 (2024).
2023
62. Discussion on the initial states of controlled bidirectional quantum secure direct communication,
J. Liu, X. Zou, X. Wang, Y. Chen, Z. Rong, Z. Huang, S. Zheng, X. Liang, and J. Wu,
Quantum Inf. Process. 22, 426 (2023).
61. Quantum hypothesis testing via robust quantum control,
H. Xu, B. Wang, H. Yuan, and X. Wang,
New J. Phys. 25, 113026 (2023).
60. Two intercept-and-resend attacks on a bidirectional quantum secure direct com- munication and its improvement,
Y. Chen, X. Zou, X. Wang, J. Liu, Z. Rong, Z. Huang, S. Zheng, X. Liang, and J. Wu,
Quantum Inf. Process. 22, 346 (2023).
59. Universal control of superexchange in linear triple quantum dots with an empty mediator,
G. X. Chan, P. Huang, and X. Wang,
Phys. Rev. B 108, 035402 (2023).
58. Trion states and quantum criticality of attractive SU(3) Dirac fermions, H. Xu, X. Li, Z. Zhou, X. Wang, L. Wang, C. Wu and Y. Wang,
Phys. Rev. Research 5, 023180 (2023).
57. Comment on “Controlled Bidirectional Quantum Secure Direct Communication with Six-Qubit Entangled States”,
X. Zou, X. Wang, Z. Rong, Z. Huang, J. Liu, and Y. Chen,
Int. J. Theor. Phys. 62, 43 (2023).
arXiv
56. Theory on electron-phonon spin dehphasing in GaAs multi-electron double quan- tum dots,
G. He, G. X. Chan, and X. Wang,
Adv. Quantum Technol. 2023, 2200074 (2023).