top of page

PUBLICATIONS

Preprints
 

53. Holonomic protected charge qubits coupled via a superconducting resonator,

C. Zhang, G. X. Chan, X. Wang and Z.-Y. Xue,

arXiv

52. Generalizable multi-parameter quantum metrology,

H. Xu, L. Wang, H. Yuan and X. Wang,

arXiv

51. Nearly sweet spots in capacitively coupled singlet-triplet spin qubits under magnetic field,

G. X. Chan, J. P. Kestner and X. Wang,

arXiv

50. Generic detection-based error mitigation using quantum autoencoders,

X.-M. Zhang, W. Kong, M. U. Farooq, M.-H. Yung, G. Guo and X. Wang,

arXiv

49. Microwave driven geometric quantum computation on semiconductor charge qubits,

C. Zhang, T. Chen, X. Wang, and Z.-Y. Xue,

arXiv

48. Quantum Monte Carlo simulations of the attractive SU(3) Hubbard model on a honeycomb lattice,

H. Xu, Z. Zhou, X. Wang, L. Wang, and Y. Wang,

arXiv

2020

47. High-fidelity geometric gate for silicon-based spin qubits,

C. Zhang, T. Chen, S. Li, X. Wang, and Z.-Y. Xue,

Phys. Rev. A 101, 052302 (2020).

arXiv

2019

46. Suppression of leakage for a charge quadrupole qubit in triangular geometry,

G. X. Chan, and X. Wang,

Adv. Quantum Technol. 2019, 1900072 (2019).

arXiv

45. When does reinforcement learning stand out in quantum control? A comparative study on state preparation,

X.-M. Zhang, Z. Wei, R. Asad, X.-C. Yang, and X. Wang,

npj Quantum Inf. 5, 85 (2019).

arXiv

44. Generalizable control for quantum parameter estimation through reinforcement learning,

H. Xu, J. Li, L. Liu, Y. Wang, H. Yuan, and X. Wang,

npj Quantum Inf. 5, 82 (2019).

arXiv

43. Quantum information scrambling through a high-complexity operator mapping,

X. Li, G. Zhu, M. Han, and X. Wang,

Phys. Rev. A 100, 032309 (2019).

arXiv

42. Plug-and-play approach to nonadiabatic geometric quantum computation,

B.-J. Liu, X.-K. Song, Z.-Y. Xue, X. Wang, and M.-H. Yung,

Phys. Rev. Lett. 123, 100501 (2019).

arXiv

 

41. Minimal nonorthogonal gate decomposition for qubits with limited control,

X.-M. Zhang, J. Li, X. Wang, and M.-H. Yung,

Phys. Rev. A 99, 052339 (2019).

arXiv

40. Spin-qubit noise spectroscopy from randomized benchmarking by supervised learning,

C. Zhang, and X. Wang,

Phys. Rev. A 99, 042316 (2019).

arXiv

2018

39. Tunable charge qubit based on barrier-controlled triple quantum dots,

X.-C. Yang, G. X. Chan, and X. Wang,

Phys. Rev. A 98, 032334 (2018).

arXiv

38. Automatic spin-chain learning to explore the quantum speed limit,

X.-M. Zhang, Z.-W. Cui, X. Wang, and M.-H. Yung,

Phys. Rev. A 97, 052333 (2018).

arXiv

37. Leakage and sweet spots in triple-quantum-dot spin qubits: a molecular orbital study,

C. Zhang, X.-C. Yang, and X. Wang,

Phys. Rev. A 97, 042326 (2018).

arXiv

 

36. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits,

X.-C. Yang, M.-H. Yung, and X. Wang,

Phys. Rev. A 97, 042324 (2018).

arXiv

35. On the validity of microscopic calculations of double-quantum-dot spin qubits based on Fock-Darwin states,

G. X. Chan and X. Wang,

Sci. China Phys. Mech. Astron. 61, 040313 (2018).

arXiv

 

34. Magic angle for barrier-controlled double quantum dots,

X.-C. Yang and X. Wang,

Phys. Rev. A 97, 012304 (2018).

arXiv

2017

33. Fast pulse sequences for dynamically corrected gates in singlet-triplet qubits,

R. E. Throckmorton, C. Zhang, X.-C. Yang, X. Wang, E. Barnes, and S. Das Sarma,

Phys. Rev. B 96, 195424 (2017).

arXiv

32. Suppression of charge noise using barrier control of a singlet-triplet qubit,

X.-C. Yang, and X. Wang,

Phys. Rev. A 96, 012318 (2017).

arXiv

31. Randomized benchmarking of barrier versus tilt control of a singlet-triplet qubit,

C. Zhang, R. E. Throckmorton, X.-C. Yang, X. Wang, E. Barnes, and S. Das Sarma,

Phys. Rev. Lett. 118, 216802 (2017).

arXiv

 

30. Energy spectrum, exchange interaction, and gate crosstalk in a system with a pair of double quantum dots: A molecular-orbital calculation,

X.-C. Yang and X. Wang,

Phys. Rev. A 95, 052325 (2017).

arXiv

2016

29. Benchmarking of dynamically corrected gates for the exchange-only spin qubit in 1/f noise environment,

C. Zhang, X.-C. Yang, and X. Wang,

Phys. Rev. A 94, 042323 (2016).

arXiv

28. Fast control of semiconductor qubits beyond the rotating wave approximation,

Y. Song, J. P. Kestner, X. Wang, and S. Das Sarma,

Phys. Rev. A 94, 012321 (2016).  

arXiv

 

27. Noise filtering of composite pulses for singlet-triplet qubits,

X.-C. Yang and X. Wang,

Sci. Rep. 6, 28996 (2016).  

arXiv

2015

26. Improving the gate fidelity of capacitively coupled spin qubits,

X. Wang, E. Barnes, and S. Das Sarma,

npj Quantum Inf. 1, 15003 (2015). 

arXiv

25. Robust quantum control using smooth pulses and topological winding,

E. Barnes, X. Wang, and S. Das Sarma,

Sci. Rep. 5, 12685 (2015).

arXiv

2014

24. Noise-compensating pulses for electrostatically controlled silicon spin qubits,

X. Wang, F. A. Calderon-Vargas, M. S. Rana, J. P. Kestner, E. Barnes, and S. Das Sarma,

Phys. Rev. B 90, 155306 (2014).

arXiv

23. Ferromagnetic response of a "high-temperature" quantum antiferromagnet,

X. Wang, R. Sensarma, and S. Das Sarma,

Phys. Rev. B 89, 121118(R) (2014).

arXiv

22. Robust two-qubit gates for exchange-coupled qubits,

F. Setiawan, H.-Y. Hui, J. P. Kestner, X. Wang, and S. Das Sarma,

Phys. Rev. B 89, 085314 (2014).

arXiv

21. Robust quantum gates for singlet-triplet spin qubits using composite pulses,

X. Wang, L. S. Bishop, E. Barnes, J. P. Kestner, and S. Das Sarma,

Phys. Rev. A 89, 022310 (2014).

arXiv

2013

20. Dynamically corrected gates for an exchange-only qubit,

G. T. Hickman, X. Wang, J. P. Kestner, and S. Das Sarma,

Phys. Rev. B 88, 161303(R) (2013).

arXiv

 

19. Noise-resistant control for a spin qubit array,

J. P. Kestner, X. Wang, L. S. Bishop, E. Barnes, and S. Das Sarma,

Phys. Rev. Lett. 110, 140502 (2013).

arXiv

2012

18. Composite pulses for robust universal control of singlet-triplet qubits,

X. Wang, L. S. Bishop, J. P. Kestner, E. Barnes, K. Sun, and S. Das Sarma,

Nature Commun. 3, 997 (2012).

arXiv

17. Covalency, double-counting and the metal-insulator phase diagram in transition metal oxides,

X. Wang, M. J. Han, L. de' Medici, H. Park, C. A. Marianetti, and A. J. Millis,

Phys. Rev. B 86, 195136 (2012).

arXiv

2011

16. Mott-insulating phases and magnetism of fermions in a double-well optical lattice,

X. Wang, Q. Zhou, and S. Das Sarma,

Phys. Rev. A 84, 061603(R) (2011).

arXiv

 

15. Dynamical mean field theory of nickelate superlattices,

M. J. Han, X. Wang, C. A. Marianetti, and A. J. Millis,

Phys. Rev. Lett. 107, 206804 (2011).

arXiv

 

14. Quantum theory of the charge stability diagram of semiconductor double quantum dot systems,

X. Wang, S. Yang, and S. Das Sarma,

Phys. Rev. B 84, 115301 (2011).

arXiv

 

13. High-frequency asymptotic behavior of self-energies in quantum impurity models,

X. Wang, H. T. Dang, and A. J. Millis,

Phys. Rev. B 84, 073104 (2011).

arXiv

 

12. d3z2-r2 orbital in high-Tc cuprates: Excitonic spectrum, metal-insulator phase diagram, optical conductivity, and orbital character of doped holes,

X. Wang, H. T. Dang, and A. J. Millis,

Phys. Rev. B 84, 014530 (2011).

arXiv

 

11. Hubbard model description of silicon spin qubits: Charge stability diagram and tunnel coupling in Si double quantum dots,

S. Das Sarma, X. Wang, and S. Yang,

Phys. Rev. B 83, 235314(2011).

arXiv

 

10. Diagrammatic quantum Monte Carlo solution of the two-dimensional cooperon-fermion model,

K.-Y. Yang, E. Kozik, X. Wang, and M. Troyer,

Phys. Rev. B 83, 214516(2011).

arXiv

9. Generic Hubbard model description of semiconductor quantum-dot spin qubits,

S. Yang, X. Wang, and S. Das Sarma,

Phys. Rev. B 83, 161301(R) (2011). (Editors' suggestion)

arXiv

8. Role of oxygen-oxygen hopping in the three-band copper-oxide model: Quasi-particle weight, metal insulator and magnetic phase boundaries, gap values,and optical conductivity,

X. Wang, L. de' Medici, and A. J. Millis,

Phys. Rev. B 83, 094501(2011).

arXiv

2010

7. Theory of oxygen K edge x-ray absorption spectra of cuprates,

X. Wang, L. de' Medici, and A. J. Millis,

Phys. Rev. B 81, 094522(2010).

arXiv

 

6. Quantum criticality and non-Fermi-liquid behavior in a two-level two-lead quantum dot,

X. Wang and A. J. Millis,

Phys. Rev. B 81, 045106 (2010).

arXiv

2009

5. Correlation strength, gaps, and particle-hole asymmetry in high-Tc cuprates: A dynamical mean field study of the three-band copper-oxide model,

L. de' Medici, X. Wang, M. Capone, and A. J. Millis,

Phys. Rev. B 80, 054501(2009). 

arXiv

 

4. Antiferromagnetism and the gap of a Mott insulator: Results from analytic continuation of the self-energy,

X. Wang, E. Gull, L. de' Medici, M. Capone, and A. J. Millis,

Phys. Rev. B 80, 045101(2009). (Editors' suggestion)

arXiv

2008

3. Local order and the gapped phase of the Hubbard model: a plaquette dynamical mean field investigation,

E. Gull, P. Werner, X. Wang, M. Troyer, and A. J. Millis,

Europhys. Lett. 84, 37009 (2008).

arXiv

2. Electronic correlation in nanoscale junctions: Comparison of the GW approximation to a numerically exact solution of the single-impurity Anderson model,

X. Wang, C. D. Spataru, M. S. Hybertsen, and A. J. Millis,

Phys. Rev. B 77, 045119 (2008).

arXiv

2004

1. Additive temporal coloured noise induced Eckhaus instability in complex Ginzburg-Landau equation system,

X. Wang, X. Tian, H.-L. Wang, Q. Ouyang, and H. Li,

Chin. Phys. Lett. 21, 2365 (2004).

bottom of page